

NORTHWEST NAZARENE UNIVERSITY

Quick Triage Tool

THESIS
Submitted to Department of Math and Computer Science

in partial fulfillment of the requirements
for the degree of

BACHELOR OF SCIENCE

Parker Bartlow
2024

THESIS
Submitted to Department of Math and Computer Science

in partial fulfillment of the requirements
for the degree of

BACHELOR OF SCIENCE

Parker Bartlow
2024

Quick Triage Tool

Author: __
 Parker Daniel Bartlow

Approved: __

Barry Myers, Ph.D., Professor,
Department of Mathematics and Computer Science, Faculty Advisor

Approved: __
Mark Michaelson, M.A., M.Ed., Assistant Professor, Department of
Academic Services, Second Reader

Approved: __
 Dale Hamilton, Ph.D., Chair,

Department of Mathematics and Computer Science

iii

Abstract

Quick Triage Tool.
BARTLOW, PARKER (Department of Mathematics and Computer Science),
MYERS, DR. BARRY (Department of Mathematics and Computer Science).

Hewlett-Packard (HP) LaserJet printers undergo rigorous quality testing to confirm they
are reliable and efficient before they are sold to the public. Much of the LaserJet
firmware testing is automated, producing thousands of failure logs daily. The process of
analyzing logs to determine the failure type (triaging) was manual, leading the sheer
magnitude of failures to outpace the capabilities of the people responsible for diagnosing
them. This project aimed to automate parts of the triage process so that time and effort
could be better allocated. The Quick Triage Tool is a full-stack tool that consists of a
MongoDB database, C# middle logic, and a Vue.js front-end website for database
management. From the front-end, users create objects called rules which contain
symptoms and represent failure types. Firmware test failure log files are automatically
searched against the database of rules, finding failure types when all rule symptoms are
matched and displaying results on a common internal website. The automation of the
triage process saves time by eliminating manual triaging and by preventing redundant
triage efforts. Automation also increases confidence in quality metrics. Lastly, the
aggregation of failure types allows failure prioritization, which increases test passing
rates and ultimately firmware quality.

iv

Acknowledgements

I would like to thank my project mentor for his guidance, expertise, patience, and

encouragement throughout the time I worked on this project. I would also like to thank

my technical mentor for his help learning new programming frameworks and

technologies. I would like to thank my manager for guidance and perspective in

navigating the professional workforce of my field for the first time. I would also like to

thank the other intern that helped in this project for her teamwork and leadership during

my first summer. Lastly, I would like to thank my dad for helping me navigate the HP

Inc. culture and helping me process the amount of new information I was learning and the

challenges I was facing.

v

Table of Contents
Title Page .. i

Committee Signature Page ... ii

Abstract .. iii

Acknowledgements ... iv

List of Figures ... vii

Introduction ... 1

Project Overview ... 1

Background .. 1

Requirements .. 2

Constraints ... 3

Quick Triage Tool Design ... 4

Requirements Gathering ... 4

The Rule ... 4

Rule Database .. 5

Rule Manager Website .. 6

Vue.js .. 6

View ... 7

Create ... 8

Test ... 9

Quick Triage Tool API ... 11

Back-End Functionality ... 11

Searching Logic ... 13

Integration with Test Source 1 .. 15

Pipeline .. 16

Displaying Results... 17

Retroactive Rule Testing ... 19

Integration With Test Source 2 .. 20

Workflow .. 20

Presenting and User Guide ... 22

Conclusion ... 23

vi

Impact .. 23

Future Work ... 24

Review ... 25

References ... 26

Appendix A: Quick Triage Tool User Guide ... 27

vii

List of Figures
Figure 1. Rule Object Structure ………………………………………………………… 4

Figure 2. Rule Manager Website: View ………………………………………………… 8

Figure 3. Rule Manager Website: Create ……………………………………………….. 9

Figure 4. Rule Manager Website: Test ………………………………………………… 10

Figure 5. Axios Call ……………………………………………………………………. 12

Figure 6. LookupDictionary Structure …………………………………………………. 13

Figure 7. RuleList Dictionary Structure ………………………………………………... 14

Figure 8. NoFlyList Structure ………………………………………………………….. 14

Figure 9. Test Source One Pipeline …………………………………………………….. 17

Figure 10. Test Source One: Display Individual Results ………………………………. 18

Figure 11. Test Source One: Display Aggregated Results ……………………………... 19

Figure 12. Test Source Two Integration Web Page …………………………………….. 21

1

Introduction

Project Overview

 The Quick Triage Tool provides functionality to automatically determine the

reasons for firmware test failures once those reasons have been previously discovered.

The tool is based on the idea of custom rule objects and consists of a Vue.js front-end

website, a MongoDB database, and custom C# searching logic. Rules contain the

information necessary to match failed test logs with failure types and are created, edited,

tested, and deleted from the Vue.js front-end website. The tool is integrated with two

sources of test failures, outputting results to two different locations for the user to see.

Background

 One of the many lines of products that HP (Hewlett Packard) Inc. makes is the

printer. HP Inc.’s Boise site is the primary location for the business behind and design of

the company’s LaserJet Printers. Both The New York Times and U.S. News has an HP

LaserJet printer as their top laser printer of 2024 (John, 2024; Keough & Wells, 2024).

One of the ways HP Inc. upholds this standard of quality is by rigorous automated testing.

Firmware, the code that runs on the printer’s specialized computer, goes through

daily automated testing, and produces three thousand to five thousand failed tests each

day. Engineers and programmers use this failure information to fix issues before products

ever reach customers, ensuring the delivery of high-quality, reliable printers. However,

each test failure produces nearly 30 text fail logs, which are files full of obscure and

highly technical text strings. These files constitute one failed test bundle and are stored in

a .zip file. Specialized programmers, who, for the remainder of this paper will be referred

2

to as triagers, know what areas of these files typically contain the type of test failure and

manually search through and analyze the fail logs to determine why the tests fail.

With thousands of daily test failures, there is no team large enough to manually

triage every test failure. This old system leads to several problems. The first is that many

test failures are not analyzed each day, meaning if the test’s reason for failure is unique, it

will not be caught by triagers. A second problem is that since many tests fail for the same

reasons, redundant effort is spent rediscovering the same failure types. A third problem

arises when a test starts failing for a different, more serious reason than it previously was

failing with. In this case, it will not be caught as the test will be assumed to be failing for

the same reason it previously was. All of these problems lead to inefficiency in the

triaging process and ultimately lower firmware quality than what is possible.

Requirements

 To solve this problem, a tool, later called the Quick Triage Tool, was proposed

that would automate the triaging process for firmware test failures. For automation to

work, there needed to be a way to create and store symptoms of test failure types that

have been discovered by triagers. Then, if symptoms of a test failure can be matched in

the test failure log files, the failure type can be known without redundant manual effort.

 This tool also needed to work with test failures produced from the two different

firmware testing sources HP Inc. uses. Both test sources organize fail logs differently and

provide unique challenges to integrate with the Quick Triage Tool. Lastly, results from

the automated triaging must be displayed in a meaningful way to triagers and other

relevant employees.

3

Constraints

 HP Inc. employees in firmware lacked the bandwidth to devote significant time to

developing a tool such as the Quick Triage Tool, so the responsibility was given to

interns. This meant that work must be completed within the summer internship window,

from late May to early August. Additionally, there were cross-team dependencies with an

HP Inc. team located in India. This meant that there were small windows of time that both

parties were working at the same time, and that much email communication passed

through half-day buffers, delaying the speed of progress.

4

Quick Triage Tool Design

Requirements Gathering

 The project mentor had the best understanding of the requirements and goals of

the tool. A technical mentor was also available that had more knowledge of the specific

frameworks and technologies that were being used. Weekly meetings with these two

individuals provided ample space for updates, questions, and additional requirements.

The project mentor served as a bridge between the users of the tool, triagers, and the

developers of the tool, the interns.

The Rule

 A rule is a custom object that represents a test failure type. Rules contain

symptoms which are used by the Quick Triage Tool to match to the contents of the fail

logs from a test failure. The structure of the rule object is as follows:

Figure 1. Rule Object Structure

 The name of each rule should sufficiently name the test failure type that rule

represents, usually in the form of the error code. The dateAdded attribute is automatically

populated upon the creation of the rule using the built in DateTime.Now constructor. The

5

description of each rule should provide any additional information about the test failure

type past just the name of it.

The lowPriority attribute is used only when two or more rules are matched to a

test failure’s log files. This, in practice, means that the tool found multiple possible

reasons that the firmware test failed. However, if one matched rule has a true value for

lowPriority, then the other matched rule is deemed more important and chosen as the true

failure type. This is most often used for failure types that involve the testing framework

itself, such as a loss of emulator power.

 Symptoms are an additional custom object that are nested within the greater rule

object. To find the type of test failure, certain error codes or other text strings must be

found in specific log files from that failed test. Each symptom contains the name of a

logfile and a list of the text strings that should be found in that logfile. Each rule has a list

of symptoms, as sometimes multiple matched symptoms are required to determine the

type of test failure.

Rule Database

 Once a triager manually determines the failure type of a failed firmware test, a

rule can be created to represent that failure type, and then used to automatically discover

all recurrences of that same failure type. Naturally, this requires that rules be stored

somewhere once created.

MongoDB is a NoSQL database, meaning it is less structured and rigorous than

its SQL database counterparts (What is NoSQL?, 2024). MongoDB was chosen as the

database to store rules because of the complexity of the rule object and the resulting

6

simplicity in database operations with those rules objects. HP Inc. also already had an

existing MongoDB server that was easily able to be utilized for this tool. NoSQL

databases handle complex objects well, as each item in the database retains the structure

of the object stored in it without much additional programming overhead.

Rule Manager Website

 Rules represent test failure types, and they can be stored in the MongoDB.

However, there must be some way to perform operations on these rules, such as viewing

them, creating, deleting, or editing them, and even testing them. To avoid triagers directly

accessing the database through a MongoDB application, the creation of a website was

chosen as the method of database management. This website is hosted on a local HP Inc.

server, limiting access to employees only. The website, plainly called the Quick Triage

Rule Manager, consisted of multiple tabs and tools that allowed users to manage the rule

database.

Vue.js

 The rule manager website was built utilizing the Vue.js framework, an open-

source JavaScript user-interface framework that aids and helps organize web page design

and functionality (Vue.js, 2024). Many other frameworks could have been used, but this

framework was recommended by the project’s technical mentor. The best and most

utilized features that Vue.js provided were reactivity and component-based architecture.

For reactivity, Vue.js uses data binding, meaning that when users changed underlying

data such as table data, the table would reflect those changes without requiring a refresh

7

of the website. The component-based architecture was the most helpful Vue.js feature, as

it made user interface (UI) creation and interaction much easier.

 Custom components such as the “Test” component can be reused throughout the

JavaScript front-end, preventing the need for duplicated and redundant code. For

example, since the testing functionality can be accessed from either the testing page from

the navigation bar or the individual rule itself in the “View and Manage Rules” page, the

component is simply created once and imported to both of those web pages. This

modularity increases readability, efficiency, and consistency between web pages. When

components are nested and reused, there are child and parent components. Sometimes

data must be passed from one component to the other, and Vue.js handles this through the

prop object. This provided framework saves a significant amount of manual JavaScript

labor. Functions of the rule manager website are listed below.

View

 To view the current rules in the database, users select the “View and Manage

Rules” page on the website’s navigation bar. This page contains a table that pulls the data

from each rule in the database and displays the most basic information about the rules:

name, data added, and description. Each row corresponds with one rule, and each has

four action buttons: edit, delete, information, and test. See Figure 2 below.

8

Figure 2. Rule Manager Website: View

The first action button, “edit”, allows you to edit individual attributes of any

specific rule, and the second, “delete”, allows you to delete a rule completely. The latter

may be done if an incorrect rule is found or if that failure type no longer applies to the

current firmware testing methods. The third action button, “info”, shows a popup with all

the rule’s attribute values, adding lowPriority and all symptom information. Lastly, the

fourth action button, “test”, brings you to the test functionality of the website and

automatically uses the rule whose “test” button the user clicked on. Testing will be

described in greater detail in a following section.

Create

 The “Create” web page is devoted to rule creation and can be accessed by either

the navigation bar or the red plus from the “View and Manage Rules” page in Figure x.

9

From here, users can add any number of symptoms to their rule, but accuracy and

correctness is heavily emphasized. See the empty “Create” page in Figure 3 below.

Figure 3. Rule Manager Website: Create

Test

 Rather than relying on each user’s comprehensive and perfect knowledge of all

failure types, a rule testing functionality is provided to ensure rule correctness and

accuracy. The “Test” web page can be accessed either from the navigation bar or from the

“View and Manage Rules” page. The testing functionality requires two inputs from the

user: the path of a failed test bundle and the ruleID of the rule that is being tested. Ideally,

once a triager discovers a new failure type, they would create a rule to catch that failure,

10

then test it here. They would input both the ruleID of their newly created rule and the

path of a failed test bundle that they have manually confirmed to fail for the reason stated

by their rule. See Figure 4 below for the “Test” page.

Figure 4. Rule Manager Website: Test

 Below the test button, there are three categories of results from testing a rule. If a

rule is not correct, it is because not all of its search strings within its symptoms were

found in the log files. The first category, “Strings Found:” provides which of the tested

rule’s search strings were correctly found in the log files. The second category,

“Strings/Logfiles Not Found:”, provides which of the search strings were not found in the

log files. Lastly, the third category, “Rules that Match this Logfile (if any):” provides the

names of any additional rules that successfully fully matched with the failed test bundle.

11

This last result is helpful because the goal for the Quick Triage Tool is for each

test failure to only match with a single rule. This testing information provides the user

with enough information to see which parts of their rule are incorrect and if there are

other rules that match, either because another user created a rule for the failure type

already or other rules in the database are incorrect themselves.

Quick Triage Tool API

 The Vue.js front-end JavaScript website on its own does nothing, as something

needs to operate in between it and the rule database to handle the commands and transfer

of data. This middleware is called an application programming interface (API), which

connects the front-end and the back-end (Frye, n.d.). The Quick Triage Tool’s

implementation, the Triage Rules API, uses the REST API (Representational State

Transfer Application API) architecture provided by ASP.NET and is written in C# (What

is ASP.NET?, 2024). This API also handles the searching logic that matches rules to the

log files found in failed test bundles.

Back-End Functionality

 The REST API architecture is based on standard HTTP (Hypertext Transfer

Protocol) methods GET, POST, PUT, and DELETE. Like other architectures, REST API

uses unique URL (Uniform Resource Locator) endpoints for API functions. Additionally,

REST API is a client-server architecture, which allows users to connect to the website

(server) from their own devices (clients) over a network. This API is hosted on a local HP

Inc. server that is on their private network.

12

 Vue.js front-end operations discussed previously, such as the test a rule

functionality, send an HTTP request to the API through a button press. A client module

called Axios was installed to the front-end and allowed for easy HTTP requests that used

the API URL endpoints to connect (Getting Started. Axios, 2024). For example, when a

user presses “Test”, a JavaScript event-handler is fired off and sends an axios.get()

request to the API’s test endpoint, which is roughly of the form <IP

address>/TriageRulesAPI/rules/test. In code, this may look like Figure 5 below.

return axios.get(‘${IPAddress}/TriageRulesAPI/rules/test

Figure 5. Axios Call

The axios client sends the packaged HTTP GET request to that API endpoint, and

as long as the HTTP method matches the GET request (API method is a HTTP GET

method), the request will successfully start up the correct API method.

 The Triage Rules API also needs to be able to communicate directly with the

MongoDB that the rules are stored in. For example, when users try to delete a rule on the

rule manager website, the Axios request connects to the corresponding Triage Rules API

endpoint, which then needs to contact the MongoDB and delete the specified rule.

MongoDB provides a driver that can be installed to .NET applications to contact a

MongoDB. The Triage Rules API uses the Rules MongoDB connection string to connect

and verify the validity of the connection request.

13

Searching Logic

 The Triage Rules API is not only responsible for handling requests between the

rule manager website and the Rules MongoDB, but also houses the searching logic that

matches rules to failed test bundles. The hierarchy and logic behind the searching

operation is relatively complex, so this next section will go into it in depth.

 The overall order and hierarchy of searching starts with the .zip file that houses

the failed test log files. These log files are iterated through one at a time. Each time a log

file is opened, it needs to be searched against the rules in the database at the time to look

for matches.

However, there are several considerations and optimizations that speed up the

brute-force nature of this approach. First, once the rule data is pulled from the database, a

new dictionary called LookupDictionary is created with log files as the key. For each

dictionary entry and log file key, there is a list of SearchData objects, each containing a

rule ID and the corresponding search strings that should be found. See Figure 6 for the

LookupDictionary structure.

Figure 6. LookupDictionary Structure

This is a different organization than previous methods, where each item is a rule,

and each of those rules could have multiple log files associated with them. Now each

14

item is a logfile with the possibility of multiple rules associated with them. This means

that if one rule has two symptoms (search strings to be found in two separate log files), it

would be present in two LookupDictionary entries.

 The result of this reorganization of data is that the program knows every relevant

symptom of the entire rules database that needs to be searched for in a given log file.

Returning to the previous general order of the search, the program looks at one log file at

a time. Upon looking at a log file, the LookupDictionary is searched for an entry with the

key equal to that log file. If one is found, the log file is opened, and the SearchData

objects are iterated through. Log files are not opened if there are no relevant symptoms to

be searched for in it, which speeds to process up as file opening is slow. This way, every

rule that has a symptom in this log file is being searched for.

 This brings up the next two new data structures, called the RuleList and

NoFlyList. The RuleList is a dictionary used to keep track of whether a rule has been

matched to a test failure bundle or not. The RuleList structure is in Figure 7 below.

Figure 7. RuleList Dictionary Structure

 All rules in the rule database are listed here, and all values start with the value

true. Once a search string is not found in a log file, the corresponding rule ID in RuleList

for that search string (found from the SearchData object in that LookupDictionary entry)

is set to false because if even one search string is not present where it should be, the rule

15

is not a match. The next step involves the use of the NoFlyList, which takes the form of

Figure 8 below.

Figure 8. NoFlyList Structure

 Once a search string is not found and the RuleList entry for that rule is set to false,

that ruleID is added to the NoFlyList. While the search iterates through SearchData

entries, the search strings are only searched for in the log files if the correspond ruleID is

not found in the NoFlyList. Once a rule’s search string is not found, the corresponding

symptom cannot be found, and there is no need to search for that rule’s other symptoms.

This increases the speed of the search and eliminates redundant searches.

 RuleList contains the final results of a search, and a method called GetTopRule

iterates through the RuleList entries that have values true. It will return the matched rule

(with RuleList value true) that has a lowPriority value of false. If there is more than one

matched rule with lowPriority false, a random matched rule is returned, but there is a

mistake in the structure of the rules which can be fixed through rule testing on the rule

manager website.

Integration with Test Source 1

 The tool functionality is present, however, a pipeline or workflow needed to be

created to automate the flow of test failures into the tool’s searching logic. The first

source that test failures were produced from was simpler to integrate with the Quick

Triage Tool, so the pipeline that was created functioned completely automatically.

16

Pipeline

 Because the production of test failures may outpace the speed of the Quick Triage

Tool at any point, the consumption of test failure bundles by the tool had to be

asynchronous, but also needed a queueing ability. RabbitMQ (Rabbit Message Queue) is

software that performs just these functions (RabbitMQ: One Broker to Queue Them All,

2024). RabbitMQ was already utilized by HP Inc. and hosted on an internal server. A new

queue called Triage was created for this project, and the project’s technical mentor

connected the first test source with this queue. When firmware tests failed from this first

test source, the failure bundles were sent to the Triage RabbitMQ queue.

 This queue required the creation of a separate program called

QuickTriageListener, which was a simple C# script that is continuously ran on the same

common server as the API and is accessed via a virtual machine (VM). This script uses

the RabbitMQ.Client library to enqueue a failed test bundle from the Triage queue if it

has received an acknowledgement from the Triage Rules API that its resources are

unused and available. The QuickTriageListener sends failed test bundles to the Triage

Rules API for processing and searching, and once the API has finished, it sends

acknowledgement back to the Listener so that it can enqueue its next failure bundle. If

there is an unusually large volume of failure bundles, this queueing system ensures that

the API is not overloaded and that all failure bundles are processed accordingly. See

Figure 9 below, which is a flowchart for the test source one pipeline.

17

Figure 9. Test Source One Pipeline

Displaying Results

 Firmware test data has been displayed on an internal HP Inc. website for quite

some time, so the natural solution to where to display the matched rule results from our

tool would be this website. The HP Inc. team in India runs this internal website, so the

task required direct communication and cooperation with them, resulting in a new API

endpoint they created on their website’s API for our tool to send results to.

 The internal firmware testing website already contained tables where each row

corresponded to a firmware test. The HP Inc. India team’s solution was to add an extra

column to this table to list and link the rule that matched the test (if any). See Figure 10

below.

18

Figure 10. Test Source One: Display Individual Results

 Triagers can use this table to find which firmware test failures do not match with

rules, download the failed test bundle, and manually determine the reason for the test

failure. Upon manually diagnosing the failure type, they can create a new rule to catch

that failure, test it, and eventually see that result on the internal website.

Matched rule results from the Quick Triage Tool also contributed to a completely

new table the HP India team created on the internal firmware testing website. In this

table, each row represented a rule, which represents a test failure type. This table

aggregates occurrences of rule matches, which provides crucial and invaluable

information that will be discussed in the conclusion of this paper. See Figure 11 below for

the aggregation table.

19

Figure 11. Test Source One: Display Aggregated Results

Retroactive Rule Testing

 With this automated pipeline, there is one large problem that can occur.

Automated firmware tests execute regularly, but at different intervals. Some tests may

only execute once every two weeks, for example. Consider a two-week test that fails and

doesn’t match with a rule. A triager may analyze it the next day, determine the new

failure, and add a new rule to the database to catch it. However, it will be nearly two

weeks before the test runs again with the new rule matching it and getting displayed. This

significantly delays the speed at which firmware problems are found and fixed.

 To counteract this problem, retroactive rule testing was implemented. A short C#

script was created that sent an HTTP request to the Triage Rules API’s searching logic

method to retrigger it. First, however, the most recent test failure bundles had to be pulled

20

from the network file share. Normally, failure bundles were sent to the Triage queue upon

failure, then sent to the API. But, with this retriggering, the searching logic still needed

access to the most recent failure bundles for each firmware test. The HP Inc. team in

India provided a URL to access the most recent test failure bundles and their

corresponding matched rule from our tool (if it exists). Next, this script was set to run

twice a day by utilizing Windows Task Scheduler. This way, if there are any changes in

failures for tests with a long interval between executions, they will be known within

twelve hours at the most. New retroactive search results are only sent to the results

website if the matched rule is different than the previously matched rule for a failed test

bundle.

Integration With Test Source 2

 The second test source for automated firmware testing is much more complicated.

An automated integration of the Quick Triage Tool and this second test source would

require much more time and resources than were available for this intern project. Instead,

a manual workflow was implemented to leverage the Quick Triage Tool’s capabilities

with the second test source.

Workflow

 Since there was no realistic way to automate the pipeline of failed test bundles

from the second test source to the Quick Triage Tool, it was decided to add a page to the

Rule Manager website. This page contained a manual integration with the second test

source, requiring. Failed test bundles from the second test source are also stored on the

same network file share as the first test source, but the file hierarchy differs. The same

21

level of file path as the first test source results in a .zip file full of .zip files that each

contain the log files that constitute a failed test bundle. This additional layer was handled

through some simple file extension checking using both the Directory and Path classes in

C#’s provided System.IO library.

 The new web page on the rule manager website is dedicated to searching failed

test bundles from the second test source manually. There is input for the user to enter the

path of a .zip of failed test bundles, then a button to begin the searching process. The

search uses the same searching logic from the Triage Rules API as the test source one

pipeline. See Figure 12 below to see this additional web page along with its results from a

search.

Figure 12. Test Source Two Integration Web Page

22

 Firmware tests that execute from the second test source are not included on the

same internal firmware testing website, so Quick Triage Tool results had to be displayed

elsewhere. Since .zips from the second test source included several failed test bundle

.zips, the search logic runs multiple times and finds a matching rule for each inner .zip

failed test bundle. These results populate a table component on the web page. This table’s

first column has the path of each failed test bundle, and the second column contains the

rule that matched, if any. Users can download a CSV containing the table data to their

own machine since there is no existing common website to share this data.

 By searching a .zip full of failed test bundles, a triager can see which bundles did

not match with a rule. At that point, the triager can download the failed test bundle to

their machine by clicking on the path in the left column. Once they have manually

discovered the failure type of that failed test, they can add a rule to the database and re-

run that search to see if a rule now matches it. While this workflow involves more manual

work than the pipeline of test source one, it still greatly improves the efficiency of the

triaging process.

Presenting and User Guide

 Once the Quick Triage Tool was in a working state, the tool had to be marketed

and taught to the triaging team, which is largely based in India. A user guide PowerPoint

was created that walked through the new, refined triaging process step-by-step. This

PowerPoint was explained to the team over Zoom but is comprehensive enough by itself

to guide a triager to the correct use of the tool. The PowerPoint itself was put on the

team’s SharePoint site so that they could reference it as they learned the tool themselves.

See Appendix A for a redacted version of this user guide.

23

Conclusion

Impact

 The Quick Triage Tool is a comprehensive and multi-faceted tool, but its impacts

can be summarized into three areas.

The first impact of this tool is that it eliminates the need to spend effort and time

rediscovering previously known failure types. Once a failure type has been manually

discovered, the Quick Triage Tool will discover every subsequent occurrence of the same

failure type automatically.

The second impact of this tool is issue prioritization which is possible through the

aggregation of rule match occurrences by the HP Inc. team in India. Employees

responsible for fixing firmware issues can prioritize which issues to fix first by which

rule has the most matches to firmware test failures. Once higher-prioritization issues are

fixed, the number of failed firmware tests dramatically decreases.

The third impact of this tool is that it improves the company’s confidence in their

quality metrics. In the previous manual triaging workflow, once a test failure type was

found, that was assumed to be the reason for failure for every subsequent failed execution

of that test. However, the reason that a firmware test fails can change between test

executions, especially to a more harmful failure type. The old system would not catch this

change, however, through the automation of the Quick Triage Tool, it would either return

a rule for the new test failure reason, or not return a rule at all because the failure type is

new. This means that test passing and failing rates are now more accurate, and the

24

company’s list of ongoing firmware issues and their prevalence should also be more

accurate.

All of these impacts and features of the tool fall under two broad improvements.

Because of the new, efficient, and expedited process, the Quick Triage Tool ultimately

increases printer firmware quality. The effort of triagers can be better allocated to

discovering new failures, and resources can be better spent on tackling the most prevalent

and pressing issues first. Along with increasing printer firmware quality, the Quick Triage

Tool also ushers in quality-of-life improvements for triagers, especially because

redundant work is eliminated. The firmware testing triage process has been completely

upgraded and refined.

Future Work

 The Quick Triage Tool could be improved by adding automatic integration with

the second test source. The current manual integration works well but is slower than the

automatic pipeline that exists for the first test source. Additionally, the prioritization

benefits of the aggregation of matched rules are not available in the manual second test

source integration. This would be a major advantage if there was an automated pipeline

from test source two to the Quick Triage Tool.

HP LaserJet printers are in the process of transitioning to a new codebase based in

C++ instead of C#. With this change, the firmware testing process will change. The

current Quick Triage Tool pipelines would no longer work, but the logic behind the tool

can be universally applied, so a new version of the Quick Triage Tool could be made to

work with the new codebase. The benefits of the tool are too good not to leverage.

25

 HP Inc. uses bug-tracking software to track progress on firmware issues that are

in progress of being fixed. Future work could include integration of this bug-tracking

software with rules, so that employees can see how close the failure type a rule represents

is to being fixed.

 Lastly, more effort could be spent to market the Quick Triage Tool to encourage

greater use amongst triagers and other departments. The tool works the best when

everyone is using it and making rules to cover all new failure types. At the presentation of

this tool, several separate departments outside of firmware took great interest, wondering

if similar tools could be made for the testing they perform.

Review

 The Quick Triage Tool is a tool created to automate the process of discovering the

failure types of failed firmware tests. The tool is based on a custom object called a rule

that represents test failure types. It involves a Vue.js front-end website to manage the

rules which are stored in a MongoDB database. The Triage Rules API connects the two,

along with housing the searching logic to match rules to failed test bundles. An

automated pipeline exists to pull failed test bundles from one test source, run them

through the tool, and display results on an internal website. The second test source has

manual integration with the tool. The Quick Triage Tool significantly improves the

efficiency of the triaging process, ultimately leading to higher printer firmware quality.

26

References

Broadcom. (2024). RabbitMQ: One broker to queue them all. RabbitMQ.
https://www.rabbitmq.com/

Frye, M.-K. (n.d.). What is an API?. MuleSoft.
https://www.mulesoft.com/resources/api/what-is-an-api

Getting started. Axios. (2024). https://axios-http.com/docs/intro

John, S. (2024, February 1). Best laser printers of 2024: Expert picked | U.S. news. U.S.
News & World Report. https://www.usnews.com/360-reviews/technology/best-
laser-printers

Keough, B., & Wells, K. (2024, April 1). The best laser printer. The New York Times.
https://www.nytimes.com/wirecutter/reviews/best-laser-printer/

Microsoft. (2024). What is ASP.NET?. Microsoft .NET. https://dotnet.microsoft.com/en-
us/learn/aspnet/what-is-aspnet

MongoDB. (2024). What is NoSQL?. MongoDB. https://www.mongodb.com/nosql-
explained

Vue.js. (2024). https://vuejs.org/guide/introduction.html

27

Appendix A: Quick Triage Tool User Guide

28

29

30

31

32

33

34

35

36

37

38

39

		pbartlow@nnu.edu, Barry Myers <blmyers@nnu.edu>, Mark Michaelson <markmichaelson@nnu.edu>, Dale Hamilton <dhamilton@nnu.edu>
	2024-04-26T21:08:49+0000
	pbartlow@nnu.edu: 43°33′32″N 116°34′1″W (12.943 m), Barry Myers: 43°41′46″N 116°19′23″W (35975.5 m), Mark Michaelson: 43°33′47″N 116°33′50″W (15.155 m), Dale Hamilton: 43°33′47″N 116°33′58″W (13.225 m)
	Certify the signatures of pbartlow@nnu.edu, Barry Myers <blmyers@nnu.edu>, Mark Michaelson <markmichaelson@nnu.edu>, Dale Hamilton <dhamilton@nnu.edu>

