
 
 

 
 

 
 
 
 
 

NORTHWEST NAZARENE UNIVERSITY 
 
 
 
 
 
 
 
 
 
 

Wildland Fire Tree Mortality Mapping from Hyperspatial Imagery Using Machine Learning 
 
 
 
 
 
 
 
 
 
 
 
 

THESIS 
Submitted to the Department of Mathematics and Computer Science 

in partial fulfillment for the degree of 
BACHELOR OF ARTS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Samuel Jones 
2021



 
 

 
 

 
 

THESIS 
Submitted to the department of Mathematics and Computer Science  

in Partial fulfillment of the requirements  
for the degree of  

BACHELOR OF ARTS 
 
 
 
 
 

 
 

Samuel Jones 
2021 

 
 
 
 
 
 

Wildland Fire Tree Mortality Mapping from Hyperspatial Imagery Using Machine 
Learning  

 
 
 
 
 
 

 

Author:    _________________________________________________________ 
Samuel David Jones 

 
Approved: ________________________________________________________ 

Dr. Dale A. Hamilton, Ph.D., Associate Professor, Department of 
Mathematics and Computer Science, Faculty Advisor 

 
Approved: ________________________________________________________ 

Dr. Benjamin Fischer, Ph.D., Associate Professor of Language and 
Literature, Second Reader 

 
Approved: ________________________________________________________ 

Dr. Barry L. Myers, Ph.D., Chair, Department of Mathematics and  
Computer Science  



 

iii 
 

 

ABSTRACT 

 
 
 

 

 
 
 
 
 
Wildland Fire Tree Mortality Mapping from Hyperspatial Imagery Using Machine 
Learning 

JONES, SAMUEL (Department of Mathematics & Computer Science), 
HAMILTON, DR. DALE (Department of Mathematics and Computer Science) 

 
The use of small Unmanned Aircraft Systems (sUAS) for obtaining wildland imagery has 
enabled the production of more accurate data regarding the effects of fire on forested land. 
This increase in precision enables accurate detection of trees from hyperspatial imagery, 
and thus the calculation of canopy cover. When pre-fire data is compared with post-fire 
data from existing canopy cover products such as the LANDFIRE project, a measure of 
tree mortality, which is a measure of burn severity, can be calculated from the difference 
between the two. A mask region-based convolutional neural network (MR-CNN) was 
trained to classify trees as groups of pixels from a hyperspatial orthomosaic. The tree 
classification is summarized at 30m in a canopy cover raster. Canopy reduction allows the 
mapping of burn severity while also identifying where surface, passive, and active crown 
fire occurred within the observed region. The calculated canopy cover derived from 
hyperspatial imagery was found to be significantly more accurate when compared with 
LANDFIRE canopy cover in all observed regions. The hyperspatially derived canopy 
cover reflected visual observations from respective sUAS imagery and ground truthing. 
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1. Overview 

The ecoinformatics research at NNU began in 2014 with the research Dr. Hamilton 

worked on in obtaining his PhD. Since then, the NNU FireMAP (Fire Mapping and 

Assessment Platform) project has built on this work to develop multiple solutions for 

assessing wildfire effects and/or severity using sUAS (small Unmanned Aircraft 

Systems) data. Among these is a machine learning classifier using a Mask Regional-

Convolutional Neural Network (Mask R-CNN) model, developed by Jacob Winters, 

which can accurately analyze forest canopy cover from five-centimeter drone imagery.  

The goal of this research project is to build off Jacob Winters work with the trained 

Mask R-CNN classifier to calculate current canopy cover with the use of sUAS data and 

evaluate it against calculated canopy cover recorded before a wildland fire event. This 

pre-fire data is available through the LANDFIRE program, which is derived from 

nationwide 30-meter spatial resolution Landsat imagery. By comparing pre-fire canopy 

cover data from LANDFIRE and post-fire canopy cover data from sUAS imagery, we 

can calculate the canopy reduction caused by wildfires. 

A snapping tool (referred to as the “snapper”) was developed by Nick Hamilton to 

process the sUAS drone imagery, which has a resolution of 5cm, to the same extent of the 

calculated canopy cover derived from satellite data in the LANDFIRE program. Without 

snapping the sUAS data to the extent of the LANDFIRE data, a pixel-to-pixel 

comparison would not be accurate [22]. 

Using 30-meter Landsat pixels based on 5-centimeter classification from drone 

imagery, we can calculate canopy cover of a given area, then compare the pre-fire and 

post-fire data sets to see if a canopy reduction has occurred in the observation area. If 

partial reduction in forest crown is found, then a passive crown fire was present. If a large 
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reduction in forest crown is found, then an active crown fire was present. If the total 

reduction in forest crown is within the margin of error, then an active ground fire was 

present. These measures can give a glimpse of how a wildland area was affected by fire 

without the need of a ground crew to examine the entire sight. 

This project was a collaborative effort between Dr. Dale Hamilton, Dr. Jason Colwell, 

Kamden Brothers, Jacob Winters, and myself during our tenured research period over the 

summer of 2020. My role in this project focused on preparing the sUAS data for 

classification data using the Mask R-CNN, classifying sUAS data, running density 

calculations, along with other data processing tasks. 

sUAS data preparation involved splitting orthomosaics and matching their spatial 

referencing to the spatial referencing of the LANDFIRE data set using the snapper. Batch 

files were created to streamline the classification process of the sUAS data with the Mask 

R-CNN. Kamden and I worked together on creating the canopy reduction layers using 

ArcGIS tools outlined in section 2.2. I was also a co-author on a research paper that was 

written about our findings. It was accepted for publication in MDPI’s Remote Sensing 

research journal this last January. 

2. Publication 

 The following paper was the result of the research completed by NNU’s summer 

FireMAP research team from May-August 2020 and was published in MDPI’s Remote Sensing 

research journal on January 15th, 2021. This study establishes the accuracy of calculating canopy 

cover with a Mask R-CNN from sUAS data as well as the limits and capabilities of using 

LANDFIRE canopy cover as a pre-fire canopy cover dataset. The paper should be cited as the 

following: 
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D. A. Hamilton, K. L. Brothers, S. D. Jones, J. Colwell, and J. Winters, “Wildland Fire 

Tree Mortality Mapping from Hyperspatial Imagery Using Machine Learning,” Remote 

Sensing, vol. 13, no. 2, p. 290, Jan. 2021. 

Abstract: The use of imagery from small unmanned aircraft systems (sUAS) has 

enabled the production of more accurate data about the effects of wildland fire, enabling 

land managers to make more informed decisions. The ability to detect trees in 

hyperspatial imagery enables the calculation of canopy cover. Comparison of 

hyperspatial post-fire canopy cover and pre-fire canopy cover from sources such as the 

LANDFIRE project enables the calculation of tree mortality, which is a major indicator 

of burn severity. A Mask Region-based Convolutional Neural Network was trained to 

classify trees as groups of pixels from a hyperspatial orthomosaic acquired with a small 

unmanned aircraft system.  The tree classification is summarized at 30 meters, resulting 

in a canopy cover raster.  A post-fire canopy cover is then compared to LANDFIRE 

canopy cover preceding the fire, calculating how much the canopy was reduced due to 

the fire. Canopy reduction allows mapping of burn severity, while also identifying 

where surface, passive crown, and active crown fire occurred within the burn perimeter. 

Canopy cover mapped through this effort was lower than the LANDFIRE Canopy 

Cover product, which literature indicated is typically over reported. Assessment of 

canopy reduction mapping on a wildland fire reflects observations made both from 

ground truthing efforts as well as observation made of the associated hyperspatial sUAS 

orthomosaic.  
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2.1. Introduction 

This study investigates the use of machine learning to identify burn severity as a 

measure of canopy reduction. Tree crowns are classified from hyperspatial (sub-

decimeter resolution) imagery using a Mask Region-based Convolutional Neural 

Network (MR-CNN). The tree crown classification is then summarized at 30-meter 

resolution, resulting in a canopy cover map. A post-fire canopy cover mapping product 

was compared to a pre-fire canopy cover mapping layer from the LANDFIRE project. 

The difference between the pre-fire and post-fire canopy cover enables a calculation of 

canopy reduction resulting as an effect of the fire, which gives an indication of tree 

mortality which is a primary indicator of post-fire effects resulting from a wildland fire.  

Forest management practices, including fire suppression efforts, have led to forests 

with higher density than were found under pre-European settlement conditions. As a 

result, wildlands are experiencing a higher frequency of catastrophic fires, with millions 

of acres burned across the western US every year, often burning with much higher 

severity than experienced under historic conditions. These higher intensity fires result in 

increased incidence of soil erosion, hydrologic degradation, and deteriorating ecosystem 

resilience. The ability to detect trees in hyperspatial imagery enables the calculation of 

canopy reduction, which is a measure of wildland fire severity. The availability of canopy 

reduction data enables better decision making for ecosystem management and fire effect 

mitigation. 
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2.1.1 Background 

The term “wildland fire severity” can refer to many different effects observed 

through a fire cycle, from how intensely an active fire is burning to the response of the 

ecosystem to the fire over the subsequent years.  As opposed to the intensity of an active 

fire which is often referred to as fire severity, this study investigates direct or immediate 

effects of a fire as observed in the days and weeks after the fire is contained, which we 

refer to as burn severity [1], [2].  Previous studies in this effort examined the effect of the 

fire on biomass consumption which indicates how much surface vegetative material has 

been consumed by the fire [1], [3]–[5].  By contrast, this study investigates the effect that 

fire has had on canopy vegetation in forested ecosystems.  In situations where the amount 

of current post-fire canopy has not been significantly altered from what can be observed 

from the pre-fire conditions, it can be assumed that a fire was only consuming surface 

vegetation (or possibly the lower canopy) but did not consume the upper portion of the 

tree crowns in the canopy [6].  This low intensity surface fire results in no mortality of 

the trees in the upper canopy, which would result in no noticeable change of canopy 

cover between pre-fire and post-fire conditions.  Another situation results from where all 

the upper tree crowns in the forest canopy have been either been consumed by a fire or 

the crown has been scorched by a more intense fire on the surface which extends into the 

tree crowns [6].  In these active crown fires, the canopy has been consumed or scorched 

by the fire, resulting in the death of all the trees provided that the trees are not resprouting 

deciduous species.  This high severity active crown fire will result in a complete 

reduction of canopy cover as compared from pre-fire conditions.  In between surface fires 

and crown fires, lie a situation where fire burning through surface vegetative material 

having enough intensity to burn or scorch the crowns of individual trees or clusters of 
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trees, resulting in a medium severity passive crown fire where some of the tree crowns 

are completely consumed or scorched [7].  While the post-fire canopy cover will be 

reduced from pre-fire canopy conditions as a result of these passive crown fires, the post-

fire canopy cover will not be reduced to zero because some of the trees that made up the 

pre-fire canopy will survive, having been neither burned nor scorched. 

Most land managers that use canopy cover mapping layers currently rely on the 

canopy cover layers that are available through the LANDFIRE project, a collaborative 

effort between the United States Forest Service and the US Department of the Interior.  

LANDFIRE produces geospatial products that describe wildland fire fuel conditions 

across the United States. From the LANDFIRE portal, land managers have access 

seamless nation-wide geospatial layers with a spatial resolution of 30 meters (30m) [8].  

These canopy cover layers were generated from imagery acquired by the Enhanced 

Thematic Mapper Plus sensor on board the Landsat 7 satellite using a decision tree 

algorithm that was trained using plot data stored in the LANDFIRE Reference Database 

which was collected from across the US [9].   

The utilization of small unmanned aircraft systems (sUAS) as a remote sensing tool 

provides land managers an affordable way to acquire imagery with much higher spatial 

resolution (sub-decimeter) than was previously available. This hyperspatial imagery 

produces homogeneous pixels which are comprised of a single class, resulting in higher 

mapping accuracy. By contrast, heterogeneous pixels which are large enough to spatially 

contain more than one class are common with lower resolution imagery [1], [4]. 

Burned vegetation, unburned canopy vegetation (conifer and deciduous trees), and 

unburned surface vegetation (brush and grass) have been shown to have distinct spectral 
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responses in both the visible and near infra-red spectra, though the spectral difference 

between canopy vegetation and surface vegetation is not as large as that between burned 

and general unburned vegetation [10]. This spectral difference is apparent when 

observing the two unburned vegetation classes in hyperspatial imagery. Persons who had 

participated in the acquisition of the sUAS imagery found that they could observe the 

visual difference between surface and canopy vegetation and that it matched what they 

had observed in the field while conducting image acquisition flights with the sUAS. 

Hamilton [1] found that tree crowns obstruct surface features in imagery acquired 

with a sUAS, preventing classification of surface features. Obstructed features include 

surface biomass consumption, a primary indicator of surface fire severity. When a tree 

crown is surrounded by burned surface fuel in the image, it is reasonable to assume that 

the ground under the tree has also burned but is obscured by the unburned crown [1], 

[11]. Unburned tree crowns within a burned area cause an under-reporting of fire extent 

due to the misclassification of unburned tree crowns within the fire perimeter as being 

unburned areas. The first step to identifying and mapping obscured burned surface fuels 

is to identify trees within the image. When a tree surrounded by burned surface fuels is 

identified, it can be inferred that the surface fuels under the tree are in fact burned and 

should be included within the fire extent. Wildland fire can also affect an ecosystem 

through tree mortality. Mortality may result from either the ignition and consumption of a 

tree crown or from scorching of the tree crown caused by heat from surface fire beneath 

the tree. The extent of tree mortality can be estimated by calculating the change in canopy 

cover before and after the fire. Post-fire canopy cover can be calculated as the percentage 
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of an image that consists of tree crowns. Pre-fire canopy cover can be retrieved from the 

Canopy Cover rasters that were published by the LANDFIRE Fire Fuels project [8]. 

2.2. Materials and Methods: Mapping Canopy Cover and Tree Mortality 

Canopy cover describes the percentage area occupied by the upper tree crowns in 

forested ecosystems. In this effort, canopy cover is calculated as the percent of upper 

layer canopy cover within a stand, which is represented as a 30-meter pixel. Once the tree 

crown classification has been completed, canopy cover is determined by summarizing the 

percentage of hyperspatial (5cm) pixels that were classified as canopy vegetation within 

each 30-meter Landsat pixel.  Finally, the post-fire canopy cover is compared against pre-

fire canopy cover from the LANDFIRE project to determine how much upper layer 

canopy cover reduction occurred due to the fire, giving an indication of tree mortality, 

which is a primary indicator of post-fire effects in forested ecosystems. 

2.2.1 Classification of Tree Crowns from Hyperspatial Imagery 

The initial step in mapping canopy cover and tree mortality enables the mapping of 

individual tree crowns within a hyperspatial orthomosaic acquired with the use of an 

sUAS.  By classifying the tree crowns within an orthomosaic, we will be able to 

distinguish between landcover lifeforms that are indicative of canopy vegetation as 

opposed to surface vegetation. 

The Mask Region-based Convolutional Neural Network (MR-CNN) is an algorithm 

for instance segmentation.  It detects objects in an image and determines which pixels 

comprise each object. When classifying an image, MR-CNN begins by applying a 

Convolutional Neural Network (CNN) to extract features from the image. The features 
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extracted from the image are used as input for a Region Proposal Network, which slides 

over the feature map and detects Regions of Interest (RoIs) which are likely to contain 

objects. Each RoI is evaluated further to determine what type of object, if any, is inside 

(in this case, tree and non-tree); the object’s bounding box; and what pixels inside the 

bounding box comprise the object [12]. 

Training data for the MR-CNN model consists of images in which the boundaries of 

all trees are marked with individual polygon. Unmarked areas are assumed to be non-tree. 

The model is trained using mini-batch gradient descent to minimize a loss function that 

measures the difference between the model’s output in response to a training image and 

the training data. 

A MR-CNN model with a ResNet-101 backbone that had been pre-trained on the 

Microsoft COCO dataset [13] was retrained to detect trees. Training images were 

cropped from orthomosaics of study areas flown with sUAS over the Boise National 

Forest. These forested sites primarily contained Pinus Ponderosa (Ponderosa Pine), 

Populus Trichocarpa (Black Cottonwood), Pseudotsuga Menzieii (Douglas Fir) and Pinus 

Contorta (Lodgepole Pine).  A polygon was traced around each tree occurring in each 

training image using the VGG Image Annotator [14] as shown in Figure 1. A total of 

1148 trees were labeled over 14 training images. Questions of whether visually 

ambiguous objects were trees or surface vegetation were answered by referring to a 3D 

model created from the same imagery as the orthomosaics. To discourage overfitting, 

training images were rotated and mirrored randomly during the training process.  
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Figure 1 Mask Region-based Convolutional Neural Network training data 

As an instance segmentation algorithm, MR-CNN can answer questions that a pixel-

based approach cannot, such as, “How many trees are in the image?” and “What is the 

distribution of tree sizes?” To facilitate calculation of canopy cover, the MR-CNN’s 

output was used to perform semantic segmentation. All pixels that were determined to be 

part of a tree were marked as tree crown and all other pixels were marked as surface.   
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(a) is pre-classified image. (b) is an image that has been classified by the MR-CNN 

2.2.2 Calculating Canopy Cover 

Canopy cover describes the vertical projection of the tree canopy onto a horizontal 

plane in forested ecosystems. In this effort, canopy cover is calculated as the percent 

canopy cover within a stand. Once the tree crown classification has been completed as 

described earlier, canopy cover is determined by summarizing the percentage of 5cm 

pixels that were classified as canopy vegetation within each 30 meter (30m) Landsat 

pixel. 

2.2.2.1 Calculate Five Centimeter Class Densities for each 30 Meter Pixel 

The density of the tree class is calculated for each 30-meter Landsat pixel from the 

5cm tree classification pixels obtained from the MR-CNN. A tool was written which 

calculates the density of 5cm pixels classified as tree crown within each 30m pixel, 

outputting a 30m resolution grayscale TIFF image. This Density Tool counts the total 

Figure 2 (a) Figure 2 (b) 
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number of hyperspatial tree class pixels occurring in the 30m pixel. The total number of 

tree pixels that occurred is then divided by the total number of 5cm pixels within the 30m 

pixel and multiplied by 100. The class densities for each 30m pixel are recorded in the 

class density output raster. This class density raster contains the percentage of each 30-

meter pixel that is comprised of 5cm pixels that are classified as being part of a tree 

crown, which effectively records Canopy Cover for each 30 meter pixel. 

2.2.2.2 Canopy Cover Analysis 

Previous efforts including Hamilton [1], [4] and Matese [15] have shown that 

mapping with higher resolution imagery results in increased accuracy than using lower 

resolution imagery.  This section summarizes the analysis performed to assess the 

effectiveness of the methods specified previously for calculating canopy cover. 

Setting and Notation. Suppose that there is a 30m pixel depicting a region of ground. 

The same 30m × 30m region of ground is viewed as a 600 × 600 region of 5cm pixels in 

the hyperspatial orthomosaic.  Then the canopy cover is calculated from the hyperspatial 

orthomosaic, and this calculation is subject to error. The probability of correctly 

identifying a “tree” pixel (sensitivity) is observed from training data to be at least 0.70, 

and the probability of correctly identifying a “non-tree” pixel (specificity) is observed 

from training data to be at least 0.95. Both values are usually higher (see Table 2 in 

Section 3.2 for examples)., but we will use the values of 0.70 and 0.95 as conservative 

estimates. 

Question: What level of accuracy can one expect for the value of canopy cover 

calculated from the 600 × 600 pixel region of the hyperspatial orthomosaic corresponding 
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to a Landsat pixel? Precisely, what is the standard error of this value? Is this significantly 

smaller than what one might hope to obtain from LANDFIRE data? 

Answer: Using The value of canopy cover can be estimated with bias close to 0 

and standard error less than 0.001080. In most cases, the standard error is less than 

0.000824. These values of standard error are significantly smaller than what one might 

hope to obtain from LANDFIRE data. They are obtained using mathematics beyond just 

routine statistical inference. The details are omitted here so as not to disturb the flow of 

the article. However, they are included in the Appendix for the interested reader. 

2.2.3 Canopy Cover: sUAS Derived vs LANDFIRE 

The LANDFIRE project is a collaborative effort between the United States Forest 

Service and the US Department of the Interior, producing geospatial products that 

describe wildland fire fuel conditions supporting wildland fire modeling across the 

United States. LANDFIRE’s Existing Vegetation Cover and Forest Canopy Cover 

products record the vertically projected percentage cover of the upper vegetation canopy 

layer [8].  For this effort in evaluating tree mortality, the Existing Vegetation Cover raster 

was updated to only contain canopy cover in forested ecosystems. Additionally, the 

Existing Vegetation Cover was updated (via the ArcGIS Spatial Analyst Con tool) with 

the Forest Canopy Cover for forested pixels where the predominant lifeform appeared to 

be either shrub or herbaceous. This conversion was accomplished by reclassing the 

vegetation cover for all non-forested lifeforms to zero, then substituting the Forest 

Canopy Cover for the Existing Vegetation Cover on pixels that had a non-forested life 

form, but also had a Forest Canopy Cover value. This resulted in a geospatial layer with 



 

 

14 
 

spatial resolution of 30 meters representing vertically projected percentage forest canopy 

cover. 

The comparison of the hyperspatial derived canopy cover (HDCC) as accomplished 

using the ArcGIS combine raster tool.  This resulted in an attribute table that had each 

combination of canopy cover that occurred within pixels in the two rasters as well as how 

many pixels the combination occurred in.  From the combine table, the difference 

between the HDCC and LANDFIRE forest Canopy Cover (LFCC) can be calculated.  

This difference can be used to analyze the statistical difference between the sUAS 

derived and LANDFIRE products as well as the determination of canopy reduction as a 

measure of tree mortality in areas where the sUAS canopy cover was calculated from 

imagery acquired after a wildland fire. 

2.2.3.1 Canopy Cover Comparison Methods 

When classifying sUAS imagery through the Mask Regional-Convolutional Neural 

Network (MR-CNN), a new image is created as an output image in which pixels are 

based on the original image is part of a tree crown (tree) or does not comprise part of a 

tree crown (no tree). During this process, however, spatial referencing and null data 

(where a pixel represents no data) values are lost and must be added back. 

Spatial referencing is added back using an ArcPy script which takes the world file 

spatial referencing from the original images that were aligned with the 30m imagery, 

inputted into the MR-CNN and adds the spatial referencing to the MR-CNN output. 

Band 4 of the classified output from the MR-CNN contains the tree/no tree 

classification.  This band is extracted using the Copy Raster Tool on Band 4 of the image. 
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This newly extracted classification raster is given as input to the density tool, sums the 

number of 5cm tree pixels within the 30m pixel and divides it by the total number of 5cm 

pixels within a 30m pixel. Multiplying this number by one hundred gives the percent of 

tree pixels or the canopy cover in the 30m pixel area as expressed in Equation 6. This 

process is repeated until each pixel in the image has been analyzed giving a 30m 

resolution canopy cover (CC) output raster. 

% 𝑜𝑓 𝐶𝐶 = (
𝑡𝑟𝑒𝑒 𝑝𝑖𝑥𝑒𝑙𝑠

𝑡𝑜𝑡𝑎𝑙 𝑝𝑖𝑥𝑒𝑙𝑠
) ∗ 100 (6) 

Before adding the null data back into the orthomosaic, the 5cm resolution imagery is 

resampled to 30m resolution. Resampling before adding the null data speeds up the 

process of adding the null data back in. Null data is recorded with a pixel value of 0 (not 

a tree) by the MR-CNN. To restore its value to NULL, ArcPy’s conditional toolset is 

used to compare pixels in the source image (the MR-CNN output) and with the original 

data to check if the value was NULL. The density tools output is changed to 255 for 

every pixel where the source image’s value is NULL. 255 is used to represent NULL 

because it is outside the range of possible values (0% to 100%). 

The various methods of processing the data outlined in the previous sections creates 

a HDCC raster that is aligned with the LFCC raster. This allows the rasters to be 

compared pixel by pixel, using the ArcGIS Combine Raster tool. This creates a new 

raster with a raster attribute table column for each of the combined rasters. Next, the 

LFCC column was subtracted from the HDCC column into a newly added Difference 

column. With sUAS data of unburned areas, this shows how close HDCC and LFCC data 

are. When comparing pre-fire LFCC against post-fire HDCC, this difference can be used 
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in the calculation of canopy reduction, an indicator of tree mortality which is a primary 

effect of wildland fire. 

 

Figure 3: An overview of the processes used to create the HDCC 

2.2.3.2 Canopy Cover Comparison Analysis 

working assumption In section 2.2.2, it was observed that (assuming 5cm pixel 

identification better than 0.80 correct for pixels representing ground with canopy cover, 

better than 0.95 for pixels representing ground without canopy cover, and no more than 

0.80 canopy cover) using adjusted hyperspatial derived data, canopy cover can be 

calculated with a standard error of less than 0.000824. This is a much smaller standard 

error than we could hope to obtain from 30m LANDFIRE pixels. Accordingly, it is 
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reasonable, when comparing LANDFIRE data to hyperspatial derive data, to make the 

working assumption that the adjusted HDCC value is correct. 

objective The method of maximum-likelihood estimation is used to construct a 

model of the error of the value of canopy cover derived from LANDFIRE data. 

setting and notation There are n LANDFIRE 30m pixels, and for each, the 

estimated value B ∈ [0, 1] of canopy cover. For each there is a corresponding region of 

5cm pixels in the hyperspatial orthomosaic, and the adjusted value of canopy cover C ∈ 

[0, 1] calculated from the 6002 pixels in corresponding region of the hyperspatial 

orthomosaic. As stated above, the latter value (C) is presumed correct, and the objective 

is to specify a model of the error in the former value (B). Write 

             X = B – C           (7) 

for the error. The data consists of n pairs (b1, c1), (b2, c2), . . . , (bn, cn), from 

which are obtained n error values 

    x1 = b1 – c1, . . . , xn = bn − cn.         (8) 

model for error A normal model for X is used, whose density is 

           𝑓𝑋(𝑥) =
1

𝜎√2𝜋
𝑒−

1

2
(

𝑥−𝜇

𝜎
)

2

                     (9) 

with parameters µ (mean) and σ (standard deviation). (Note that µ and σ are the 

respective mean and standard deviation of the error B - C only, and not of the canopy 

cover itself or any estimate thereof.) The values of the parameters are unknown, and the 

next task is to choose the best values for them (so that the model best accounts for the 

present data). 
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maximum-likelihood estimators for parameters  The maximum-likelihood 

estimations for µ and σ are 

          µ̂ = 𝑋̅ =
∑𝑋

𝑛
              (10) 

and 

        𝜎̂ = 𝑆̂ = √
∑(𝑋−𝑋̅)2

𝑛
              (11) 

respectively, the latter being the “population standard deviation”  𝑆̂ with 

denominator n instead of the “sample standard deviation” 𝑆̅ with denominator   n − 1. 

conclusion The maximum-likelihood estimation for a normal error X of the 

LANDFIRE value for canopy cover has mean  𝑋̅ and standard deviation  𝑆̂, calculated 

from the n values x1 = b1 – c1, . . . , xn = bn − cn of the difference X = B - C between 

LANDFIRE Canopy Cover and (adjusted) Hyperspatial Derived Canopy Cover. 

2.2.4 Mapping Tree Mortality via Canopy Reduction 

While it is much more accurate to map canopy cover from hyperspatial sUAS imagery, 

the mapping extent is limited to how large of a study area can be flown with a sUAS.  

Current regulatory and technical constraints limit flight operations with a single sUAS in 

forested environments to under 400 hectares in a single day [16].  For mapping post-fire 

canopy cover, this constraint can be overcome with more flights on all but the largest 

fires.  Due to the unpredictable nature of fires resulting from unplanned ignitions, it is not 

feasible to obtain hyperspatial sUAS derived canopy cover data reflecting pre-fire 

conditions.  Fortunately, the LANDFIRE products are generated for the entire United 

States and are updated every two years.   
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For mapping canopy reduction, which is a proxy for tree mortality, a comparison was 

made between the LFCC (pre-fire canopy cover) against the HDCC (post-fire) layer, as 

described in the previous section. 

Once the difference between pre-fire LFCC and post-fire HDCC, canopy cover is 

calculated, canopy cover reduction (CCR) can be calculated by calculating the difference 

between LFCC and HDCC, minus the estimated error standard deviation (multiplied by 

the Standard Normal density) and estimated error mean as shown in Eq 12. 

2.2.4.1 Canopy Reduction Methods 

Due to LANDFIRE’s canopy cover being less accurate than the HDCC, it cannot 

simply be stated that reduction is the discrepancy between sUAS Derived data and 

LANDFIRE data. Instead, we must use the data from unburned areas to see how much 

this discrepancy varies. Then any numbers outside of the normal variance is a change in 

canopy cover to a 95% degree of certainty. Once it is determined that there has been a 

change there are two possibilities for what that change could be, active crown fire or 

passive crown fire. If the HDCC is 0% it was an active crown fire in this area otherwise it 

was a passive crown fire.  

The main difficulty with calculating the type of fire based on this method is that there 

is some uncertainty due to LANDFIRE being 30-meter data. For this reason, it is difficult 

to tell what happened to pixels where there was not enough of a difference to be certain if 

there was a change. The discrepancy between the data could just be due to LANDFIRE’s 

overreporting or it could be due to a passive crown fire.  
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2.2.4.2 Canopy Reduction Analysis 

working assumption As before, a 30m-by-30m square of land is being 

considered, which corresponds to a single LANDFIRE pixel as well as to a 600 x 600 

pixel region in a hyperspatial orthomosaic. Again, B ∈ [0, 1] is the canopy cover 

according to LANDFIRE, and C ∈ [0, 1] is the adjusted value of canopy cover obtained 

from the hyperspatial orthomosaic, which is assumed to be correct. In the previous 

section, maximum-likelihood estimation was used to construct a model of the error X = B 

- C, which was a normal density with estimated parameter values µ = µ̂ = 𝑋̅ and σ = 𝜎̂ = 

𝑆̂. 

objective A criterion is developed by which it can be concluded, with the desired 

level of confidence 1 - α, that canopy cover, from past LANDFIRE image to present 

hyperspatial orthomosaic, has decreased by at least some particular value r. 

the difficulty The difficulty here is that there is no available pre-fire value of C 

(canopy cover calculated from a hyperspatial orthomosaic), but only a past value of B 

(canopy cover calculated from LANDFIRE) to compare with the present value of C. The 

notation X = B - C, is still used, while now it is recognized that B is a past value and C is 

a present value.  This means that X (difference in LFCC and (adjusted) HDCC values) 

may include change in canopy cover (where a positive value might result from a crown 

fire), or inaccuracy of LANDFIRE data, or both. 

the null hypothesis The null hypothesis H0 that we wish to test is that there was a 

reduction in canopy cover of no more than r. This H0 will be rejected if, even allowing 

for a canopy reduction of r, the value of B - C is too high to be explained by chance; that 

is, if 
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   B − C > r + µ + zασ,    (12) 

or, equivalently, 

  X > r + µ + zασ. 

Replacing the inequality with an equality and solving for r, the following criterion 

is obtained. 

criterion It may be inferred that canopy cover has decreased by at least 

   B – C  –  µ  –  zασ,                (13) 

where B is past canopy cover according to LANDFIRE,  C  is the adjusted value  

of canopy cover from a hyperspatial orthomosaic, µ and σ are the parameter values 

obtained as described previously, and zα is the critical value of the Standard Normal 

density at significance level α. Intuitively, the amount that we can conclude by which 

canopy cover has been reduced is the difference “past LANDFIRE minus present 

hyperspatial” B − C, minus the average discrepancy µ between the LANDFIRE B and 

hyperspatial-derived C, minus an additional margin of error zασ which is larger, the 

higher the level of confidence we wish to have. 

2.3. Results 

2.3.1 Tree Crown Classification Validation 

To assess the performance of the MR-CNN in mapping tree crowns, validation data was 

prepared using ArcGIS. Sample areas of canopy and surface vegetation were recorded as 

polygons in shapefiles digitized from existing orthomosaics. Validation data was made 

for all orthomosaics used in the research.  
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The MR-CNN was run on the orthomosaics used for validation. Agreement between a 

classifier’s output and the validation data was calculated using ArcMap’s Tabulate Area 

tool as shown in   
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. A classifier’s accuracy on an orthomosaic was computed as the area where the classifier 

agreed with the class marked in the validation data divided by the total area marked in the 

validation data. 

Orthomosaics where choose with a variety of different conditions to find any anomalies 

where the classifier underperforms. Trees in the chosen orthomosaics were comprised 

primarily of Pinus Ponderosa (Ponderosa Pine), Populus Trichocarpa (Black 

Cottonwood), Pseudotsuga Menzieii (Douglas Fir) and Pinus Contorta (Lodgepole Pine). 

The distinguishing characteristics of the ten chosen orthomosaics were as follows: 

● NewStart: Surface vegetation comprised of brush and herbaceous vegetation in 

the riparian zone along Grimes Creek. Low canopy cover. 

● GrimesCreek: Surface vegetation comprised of brush and herbaceous vegetation 

both inside and outside the riparian zone along Grimes Creek. Moderate to low 

canopy cover. 

● South Placerville: Surface vegetation comprised of brush and herbaceous 

vegetation both inside and outside the riparian zone. Low canopy cover. 

● East Placerville: Mix of herbaceous vegetation and canopy cover. Moderate to 

low canopy cover. 

● West Placerville: Wide open area covered in trees with surface vegetation along 

the ground around trees. Moderate to high canopy cover 

● Northwest Placerville: Flat area with trees and tree-like brush. Moderate canopy 

  cover. 
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● Edna Creek: Lots of unforested areas or areas with dead trees. Patches of forest 

throughout the orthomosaic. Low canopy cover. 

● Belshazzar - Very dense surface vegetation. Not in a riparian zone. Certain areas 

experienced larger-than-normal orthomosaic stitching artifacts, which we 

hypothesized could cause trouble for object detection techniques. Predominantly 

high canopy cover with some meadows. 

● North Experimental Forest: Herbaceous vegetation around water sources. Sparse 

forest. Moderate to low canopy cover. 

● South Experimental Forest: Not much other vegetation than trees. Ground is white 

in many areas. Moderate canopy cover. 
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Table 1: Confusion matrices of MR-CNN tree crown classifications.  Classified surface 
and canopy are shown in the rows while human labeled surface and canopy are in columns. 

 South Placerville NW Placerville Edna Creek South Exp. Forest 

 Surface Canopy Surface Canopy Surface Canopy Surface Canopy 

Surface 47.5% 19.9% 46.6% 6.2% 49.0% 0.6% 49.1% 10.6% 

Canopy 0.6% 32.0% 2.3% 44.9% 0.0% 50.3% 0.4% 40.0% 

 North Exp. Forest East Placerville West Placerville 

 Surface Canopy Surface Canopy Surface Canopy 

Surface 50.0% 10.5% 49.29% 4.50% 
49.98% 7.29% 

Canopy 0.3% 39.2% 
0.00% 

46.21% 
0.00% 42.73% 

 Belshazzar Newstart Grimes Creek 

 Surface Canopy Surface Canopy Surface Canopy 

Surface 47.1% 3.6% 50.1% 16.9% 51.5% 2.9% 

Canopy 3.0% 46.3% 0.2% 32.8% 0.2% 45.4% 

The MR-CNN model’s overall accuracy was 90%. The specificity (correctly 

identified tree pixels/total number of tree pixels) was 84% and the sensitivity (correctly 

identified non-tree pixels/total number of non-tree pixels) was 99%. The MR-CNN was 

found to correctly identify a high number of tree pixels while only missing a low number 

of tree pixels as shown in Error! Reference source not found..  
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Table 2: MR-CNN tree crown classification statistical summary 

 Accuracy Specificity Sensitivity 

South Placerville 79.5% 98.2% 70.5% 

NW Placerville 91.5% 95.1% 88.3% 

Edna Creek 99.3% 100.0% 98.8% 

South Exp. Forest 89.1% 99.0% 82.2% 

North Exp. Forest 89.2% 99.2% 82.6% 

East Placerville 95.5% 100.0% 91.6% 

West Placerville 92.7% 100.0% 87.3% 

Belshazzar 93.4% 93.9% 92.9% 

Newstart 82.9% 99.4% 74.8% 

Grimes Creek 96.9% 99.6% 94.7% 

2.3.2 Canopy Cover Analysis 

Running an orthomosaic through the Snapper Tool, MR-CNN, and Density Tool 

gave a 30m orthomosaic with canopy cover that also is coregistered with LANDFIRE 

data. Then the HDCC numbers were adjusted based on the bias of the MR-CNN. The 

values used to calculate the bias were the accuracy of correctly identifying tree pixels 

(sensitivity) and the odds of a false positive (specificity). These numbers ended up being 

84% and 99% respectively. Figure 4 shows the HDCC layer for South Placerville. 
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Figure 4: Values are in percent canopy cover      

2.3.3 Canopy Cover Comparison: Hyperspatial Derived vs LANDFIRE 

 Ten orthomosaics where there was no fire were compared using the methods 

stated above. LANDFIRE was over reporting by an average of 2.5% over the HDCC 

layer. This agrees with what Scott [17] stated, that the “canopy cover values [for 

LANDFIRE] are too high.” The standard deviation for the difference between each pixel 

was 14. This number is a little high and will hopefully be driven down by future 

improvements. Figure 5 shows a piece of the results for Edna Creek. White represents a 

higher canopy cover for the HDCC layer while white represents a higher canopy cover 

reported by LANDFIRE. The grey composing most of the figure is for when the 

difference is equal or close to zero. 
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Figure 5: A raster representing the comparison between the LANDFIRE and HDCC 
data. White indicates LANDFIRE reported more canopy cover. Black indicates the 

inverse 
Table 3: Mean difference and the standard deviation of that difference for each area 

 Mean Standard 
Deviation 

Belshazzar 17% 14 

New Start 4% 13 

Grimes Creek 6% 15 

NW Placerville 1% 11 

0530 Placerville 10% 9 

Edna Creek 4% 1 

South Experimental 
Forest 

3% 12 

North Experimental 
Forest 

7% 12 

East Placerville 7% 12 

West Placerville 2% 13 

Error! Reference source not found. shows that the LFCC over reported for e

very orthomosaic. 
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2.3.4 Tree Mortality Mapping Assessment 

 The standard deviation and mean collected from the ten non-burnt orthomosaics 

show that there needs to be at least a change of 27% to know there has been a change 

with 95% confidence. If the difference is high enough to say there has been a change next 

the HDCC layer can be looked at to see whether it was a passive crown fire or an active 

crown fire. Pixels that did not contain adequate canopy reduction (more than 26%) from 

comparing pre-fire LFCC to post-fire HDCC are considered to be inconclusive. This 

would include unburned areas, surface fire, passive crown fire, and active crown fire. If 

an area had less than 27% canopy cover then we cannot say whether any canopy 

reduction occurred. This method was used on orthomosaics acquired over portions of the 

Mesa fire (a 16,000 hectare mixed severity fire) to calculate burn intensity. This fire 

worked well as there were areas of active crown fire, passive crown fire, and surface fire. 

Figure 6 shows the Southwest area of the Mesa fire which had a lot of Active Crown fire. 

While Figure 7 the east section which had more passive crown fire and possible surface 

fire.  
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(a)              (b)  

Figure 6: (a) Hyperspatial data after a burn. (b) Types of fire: Red=Active, 
Yellow=Passive, Black=inconclusive crown fire activity 

 

(a)          (b) 

Figure 7 (a) Hyperspatial data after a burn. (b) Types of fire: Red=Active, 
Yellow=Passive, Black=inconclusive crown fire activity 
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2.4. Discussion 

Post-fire mapping products are commonly used by land managers as they are 

developing post-fire management plans which specify strategies for mitigating the effects 

of the fire.  In order for this data to be most useful, it needs to be readily available to 

managers.  The advantage of using imagery acquired by sUAS is that it can be available 

as quickly as managers can get out to the site and conduct image acquisition flights.  The 

timing of the flights can be tailored to optimize meteorological conditions that are 

conducive to acquiring image acquisition by enabling managers to acquire imagery as 

soon as the scene is not obscured by smoke and there is low enough cloud cover to ensure 

adequate illumination of the scene.   

The MR-CNN was found to be very effective in identifying tree crowns.  The 

classifier was found to have virtually no false positives with a specificity of 99%.  The 

false negatives were still minimal, with a sensitivity of 84%.   

Scott [17] showed that LANDFIRE Canopy Cover typically is over reported.  As 

expected, when comparisons were made of study areas that had not experienced wildland 

fire, the HDCC was on average 2.5 percentage points lower than the LANDFIRE Canopy 

Cover.  While the mean difference between the HDCC and LFCC was only a few 

percentage points, the higher standard deviation which typically ranged a bit more than 

10 percentage points indicates that the canopy cover between the HDCC and LFCC 

products differed more significantly than indicated solely by the means. 

The canopy reduction mapping over a burned area was very promising. When ran on 

the Mesa fire most pixels correctly identified surface fire as well as both active and 
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passive crown fire. These methods work best on areas that had higher pre-fire canopy 

cover and canopy reduction. There needs to be at least a 27% difference for there to be a 

known change. Various theories to bring this number down are brought up in the future 

work section (5.1). 

In addition to higher accuracy mapping of canopy cover as well as tree mortality as 

measured by canopy reduction, the use of sUAS allows for much more current data 

acquisition than is possible with the LANDFIRE products.  Using imagery acquired with 

a sUAS, it would be possible to have the HDCC product available within a day of flying a 

study area.  By contrast, the current LANDFIRE 2.0.0 Remap effort is using Landsat 

imagery that was acquired in 2016.  The initial product releases which covered the majority 

of the Contiguous US did not occur until 2019, meaning even the initial product releases 

were derived from imagery that was already three years out of date [8].  While canopy 

cover can be mapped with much higher accuracy using hyperspatial imagery acquired with 

a sUAS, this research team found that current technical and regulatory constraints on drone 

usage realistically will only allow for the acquisition of up to 600 hectares per day [16].  

To effectively map large class F (> 400 ha) and G (> 5,000 ha) fires [18], larger and more 

efficiently acquirable imagery satellite system still needs to be utilized to obtain a large 

enough analysis extent to map the whole fire.  As the spatial resolution of satellite imagery 

increases with some of the new high resolution sensors that are being put into orbit, it may 

be possible to leverage this methodology, applying it to new generations of imagery as they 

approach hyperspatial resolution. 
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2.5. Conclusions 

Detection and mapping of trees from hyperspatial drone imagery enables more 

accurate mapping of canopy cover, a measure of forest density which is used to 

determine ecosystem departure from historic fire regimes, a primary measure of 

ecosystem resilience [19].  A comparison of a pre-fire LANDFIRE Canopy Cover 

product against post-fire HDCC resulted in a very effective measure of canopy fire 

reduction, which is a measure of tree mortality resulting as an effect of the wildland fire. 

2.5.1 Future Work 

While this effort was highly effective in establishing a timely, effective and cost-

efficient means of mapping canopy cover and tree mortality, there are many areas of 

future research which could result in an improvement in the effectiveness of this 

methodology. 

An improvement in wildland fire extent mapping can be achieved by identifying 

unburned trees that are surrounded by surface vegetation.  Current classification methods 

developed through this effort [1], [3] which map burn extent are not capable of detecting 

that a surface fire burned underneath an unburned tree crown due to the view of the 

surface vegetation being obscured from the sensor on the sUAS by the tree crown.  While 

it may not be possible to determine whether the biomass consumption under the tree 

crown is high or low due to the presence of white ash, it would be possible to identify 

that the surface vegetation was burned and update the burn extent and aerial mapping 

accordingly based on assumptions made based on whether surface vegetation visible next 

to the crown was burned.  
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While the specificity of the MR-CNN was quite high at 99%, the accuracy of the 

classifier could be improved by refining the training data for the MR-CNN, based on 

observations of false negatives during validation.  This refinement would likely improve 

tree crown classification, reducing the number of false negatives, thereby increasing the 

classifier sensitivity, which was 84% in the validation dataset used for this effort. 

An improvement in tree crown classification accuracy might be able to be achieved 

by using pixels’ heights as additional input to the classifiers. Per-pixel height values were 

available from a digital surface model produced during the orthomosaic creation process 

but were not used as an input to the MR-CNN in this effort. 

Due to the need to split each orthomosaic, the MR-CNN classifier can miss trees that 

are on the border of these splits since they look like half trees. This problem could be 

eliminated by modifying the snapping and density tool to run larger files than what they 

are currently limited to due to OpenCV’s file size limits. This would allow entire 

orthomosaics to be processed at once. 

A more major problem that arises with splitting up the image is when 30m pixels 

overlap. This happens because the LANDFIRE and hyperspatial image cannot line up 

perfectly. Because of this the 5cm data has an extra pixel on the bottom and right when it 

is clipped. The density tool creates a whole 30m pixel from these few extra 5cm pixels on 

the edges. When the 30m rasters are recombined the data at the overlap is corrupted. This 

problem can be fixed either creating a more direct method to handle the extra pixel or by 

getting rid of the split. Getting rid of the split would require OpenCV to be able to handle 

larger orthomosaics. This problem is most likely a big factor in the high standard 



 

 

35 
 

deviation. If fixed the difference needed to be confident there has been a change should 

drop. 

Supplementary Materials: The following are available online from the authors at 

https://firemap.nnu.edu/tree-mortality: source code and data. 
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Appendix: Accuracy of Calculated Value for Canopy Cover 
 In this appendix, the accuracy of the value for canopy cover calculated from the 

hyperspatial orthomosaic is shown to be better than that calculated from LANDFIRE. 

This conclusion was stated in Subsection 2.2.2, but depends on mathematics beyond just 

routine statistical inference. The details are given here to justify the conclusion. 

Setting and notation. Suppose that there is a 30m pixel depicting a region of 

ground with canopy cover value c ∈ [0, 1]. (The actual value c would be unknown in 

practice.) The same 30m × 30m region of ground is viewed as an 𝑛 × 𝑛 region of smaller 

pixels in the hyperspatial orthomosaic. (In practice, 𝑛 would be equal to 600, and the 600 

× 600 orthomosaic would consist of 5cm pixels, but the symbol 𝑛 will be used for now 

for greater clarity.) The number of true “tree” pixels is 𝑛2𝑐 , and the number of “non-

tree” pixels is 𝑛2(1 − 𝑐). Each of the 𝑛2 pixels is assigned by the MR-CNN a binary 

value A = 1 (tree) or A = 0 (non-tree). Then the canopy cover is calculated from the 

hyperspatial orthomosaic as 

     𝐴̅ =
∑𝐴

𝑛2 ,    (1) 

where the sum is taken over all 𝑛2 pixels. 

The assignments are subject to error. Suppose the probability of correctly 

assigning A = 1 to a “tree” pixel (sensitivity) is known to be p ∈ [0, 1], and the 

probability of correctly assigning A = 0 to a “non-tree” pixel (specificity) is known to be 

q ∈ [0, 1]. 

Question. What level of accuracy can one expect for the value of canopy cover 

calculated from the 𝑛 × 𝑛 pixel region of the hyperspatial orthomosaic corresponding to a 
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Landsat pixel? Precisely, what is the standard error of this value? Is this significantly 

smaller than what one might hope to obtain from LANDFIRE data? 

Mean and standard deviation of calculated value. The expected value (mean) of 

the calculated value 𝐴̅ is 

𝐸[𝐴̅] = 𝑐𝑝 +  (1 −  𝑐)(1 −  𝑞)   (2) 

= 1 − q + c(p + q − 1). 

The standard deviation is 

√
𝑛²𝑐𝑝(1 − 𝑝) + 𝑛²(1 − 𝑐)𝑞(1 − 𝑞)

(𝑛²)²
        (3) 

=
√𝑐𝑝(1−𝑝)+(1−𝑐)𝑞(1−𝑞)

𝑛
  

Adjustment of value for canopy cover. Recall that c is the proportion of small 

pixels representing ground that has canopy cover. It is the number wanted but not known. 

One solves for c  in the expression for 𝐸[𝐴̅] above to obtain 

𝑐 =
𝐸[𝐴̅ ]+𝑞−1

𝑝+𝑞−1
                (4) 

And thus 

𝐶 =
𝐴̅+𝑞−1

𝑝+𝑞−1
 

is an unbiased estimator of c. This will be called the “adjusted canopy cover”.  

And the standard error of C is just the standard deviation of 𝐴̅ divided by 𝑝 + 𝑞 − 1, 

which is    
√𝑐𝑝(1 − 𝑝)+(1 − 𝑐)𝑞(1 − 𝑞)

𝑛(𝑝+𝑞−1)
. 

Next, this expression will be examined more closely to obtain an upper bound.  
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Derivation of upper bound. The quantity x(1-x) is decreasing for on the interval 

[0.5, 1], so that since p > 0.70 and q > 0.95, 

p(1 − p) < (0.70)(1 − 0.70) and q(1 − q) < (0.95)1 − 0.95). 

It also follows that 

(0.70)(1 − 0.70) > (0.95)(1 − 0.95), 

whereupon 

c(0.70)(1 − 0.70) + (1 − c)(0.95)(1 − 0.95) 

(which is a weighted mean of (0.70)(1 - 0.70) and (0.95)(1 - 0.95)) is an increasing 

function of c. Combining this fact with the first two inequalities, one obtains 

cp(1 − p) + (1 − c)q(1 − q) 

< c(0.70)(1 − 0.70) + (1 − c)(0.95)(1 − 0.95) 

< (0.80)(0.70)(1 − 0.70) + (1 − 0.80)(0.95)(1 − 0.95) 

for 

p > 0.70, q > 0.95, and c < 0.80. 

The actual canopy cover (c) in the training data used was less than 0.80, the sensitivity 

(p) was better than 0.70, and the specificity (q) better than 0.95. Using also p + q − 1 >

 0.70 + 0.95 − 1, one obtains 

√𝑐𝑝(1 − 𝑝)+(1 − 𝑐)𝑞(1 − 𝑞)

𝑛(𝑝+𝑞−1)
<

√(0.80)(0.70)(1 − 0.70)+(1 − 0.80)0.95(1 − 0.95)

600(0.70+0.95−1)
 ≈ 0.001080, 
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which compares favorably with results obtained with LANDFIRE 30m pixels. If one 

assumes that p > 0.80 (which is true in most cases) rather than merely p > 0.70, the upper 

bound on the standard error of C becomes 

√(0.80)(0.80)(1 − 0.80)+(1 − 0.80)0.95(1 − 0.95)

600(0.80+0.95−1)
  ≈ 0.000824, 

which would be impossibly low to achieve with LANDFIRE 30m pixels. 

Conclusion. The adjusted value of canopy cover calculated from the hyperspatial 

orthomosaic has lower standard error than we could hope to obtain from LANDFIRE 

30m pixels. 

3. Finale 

 This project found successful methods to compare pre-fire LANDFIRE and post-

fire sUAS data to calculate a measure for tree mortality. However, there is still room for 

improvement. As described in the publication, LANDFIRE calculated canopy cover’s 

margin for error is not as precise as the calculated canopy cover derived from sUAS data, 

which leads to a less accurate analysis of tree mortality. One solution to this problem is to 

use a pre-fire data set with a higher resolution such as Planet Labs SkySat, which 

provides 50cm imagery of almost any location on Earth. If SkySat imagery was available, 

the Mask R-CNN could be used to derive a pre-fire canopy cover data set with a much 

higher degree of accuracy than that of LANDFIRE’s. 

 Another problem arises from splitting the image for classification. Rejoining the 

orthomosaic, for comparison with the LANDFIRE data, can create a one-pixel border on 

each edge of the split. The images are split because the computer that is used for 

classification has a limited amount of VRAM (video random access memory), which runs 
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out quickly when the orthomosaics are not trimmed down. There are a couple of solutions 

to this problem. The first is to upgrade the lab computer that runs the Mask R-CNN to a 

video card(s) with more VRAM. This is, however, a costly solution. A second solution 

would be to utilize a cloud computing service such as Amazon Web Services, Google 

Cloud, or Microsoft’s Azure which all offer machine learning services.  

 Working on this project was a great learning experience. while studying 

geography at College of Western Idaho (CWI), I learned the skills needed for performing 

analysis on spatial data. This project allowed me to apply those spatial analysis and 

geographic information systems skills in a dynamic environment while also allowing me 

to apply what I learned at NNU in the machine learning and data structures courses. 

Writing and publishing a peer reviewed paper is an opportunity that not many undergrads 

get, which I am grateful to have had the ability to be a part of the writing and publishing 

process. 
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